A384403 a(n) is the smallest number with n digits, all of which are prime, and n prime factors, counted with multiplicity, or -1 if there is no such number.
2, 22, 222, 2223, 22232, 222222, 2222325, 22222272, 222225552, 2222223255, 22222335232, 222222327525, 2222222372352, 22222222575552, 222222223327232, 2222222225252352, 22222222223327232, 222222222272535552, 2222222222225252352, 22222222222327775232, 222222222222737375232, 2222222222227572375552
Offset: 1
Examples
a(4) = 2223 because the four digits 2,2,2,3 are prime and 2223 = 3^2 * 13 * 19 has 4 prime factors, counted with multiplicity.
Programs
-
Maple
PD:= [2,3,5,7]: f:= proc(n) local x,L,t,i; for x from 4^n to 2*4^n-1 do L:= convert(x,base,4); t:= add(PD[L[i]+1]*10^(i-1),i=1..n); if numtheory:-bigomega(t) = n then return t fi od; -1 end proc; map(f, [$1..25]);
Comments