cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384408 Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/2)^(k+1)).

This page as a plain text file.
%I A384408 #11 May 29 2025 07:57:35
%S A384408 1,13,2426,2393226,7056543721,46153703519501,564874416706639304,
%T A384408 11596724623199364432312,369937054535706501459633546,
%U A384408 17326810763609633232550088712162,1140582994940898154002780391375267884,101920298764725526200442366857326292990348
%N A384408 Expansion of Product_{k>=1} 1/(1 - k^3 * x)^((1/2)^(k+1)).
%F A384408 G.f.: exp(Sum_{k>=1} A000670(3*k) * x^k/k).
%F A384408 a(n) ~ sqrt(Pi) * 3^(3*n + 1/2) * n^(3*n - 1/2) / (sqrt(2) * exp(3*n) * log(2)^(3*n+1)). - _Vaclav Kotesovec_, May 29 2025
%o A384408 (PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
%o A384408 my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a000670(3*k)*x^k/k)))
%Y A384408 Cf. A084784, A384410.
%Y A384408 Cf. A249941.
%K A384408 nonn
%O A384408 0,2
%A A384408 _Seiichi Manyama_, May 28 2025