cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384409 Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/3) * (1/2)^(k+1)).

This page as a plain text file.
%I A384409 #11 May 28 2025 09:19:02
%S A384409 1,25,91285,3123562205,443053422073715,178523879060427556091,
%T A384409 164353348187741234196744375,299888034255064866129187000267695,
%U A384409 981055599661644496521237670996742113560,5340738663490095110375815302474169583702354680
%N A384409 Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/3) * (1/2)^(k+1)).
%F A384409 G.f.: exp((1/3) * Sum_{k>=1} A000670(4*k) * x^k/k).
%o A384409 (PARI) a000670(n) = sum(k=0, n, k!*stirling(n, k, 2));
%o A384409 my(N=10, x='x+O('x^N)); Vec(exp(sum(k=1, N, a000670(4*k)*x^k/k)/3))
%Y A384409 Cf. A000670, A384407.
%K A384409 nonn
%O A384409 0,2
%A A384409 _Seiichi Manyama_, May 28 2025