cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384414 Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/30) * (2/3)^k).

This page as a plain text file.
%I A384414 #14 May 28 2025 09:19:10
%S A384414 1,73,2271421,664978095445,805854449283423655,
%T A384414 2773445081734579264589407,21807207369084946567603587345091,
%U A384414 339838389273170021807379637478064625867,9495034758014772381226851471008240873743234210,441461703234194795490537796224906335240071042475017490
%N A384414 Expansion of Product_{k>=1} 1/(1 - k^4 * x)^((1/30) * (2/3)^k).
%F A384414 G.f.: exp((1/10) * Sum_{k>=1} b(4*k) * x^k/k), where b(n) = Sum_{k=0..n} 2^k * k! * Stirling2(n,k).
%o A384414 (PARI) b(n) = sum(k=0, n, 2^k*k!*stirling(n, k, 2));
%o A384414 my(N=10, x='x+O('x^N)); Vec(exp(sum(k=1, N, b(4*k)*x^k/k)/10))
%Y A384414 Cf. A004123, A384412.
%K A384414 nonn
%O A384414 0,2
%A A384414 _Seiichi Manyama_, May 28 2025