cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384421 The number of exponentially squarefree prime powers (not including 1) that unitarily divide n.

This page as a plain text file.
%I A384421 #8 May 28 2025 10:51:59
%S A384421 0,1,1,1,1,2,1,1,1,2,1,2,1,2,2,0,1,2,1,2,2,2,1,2,1,2,1,2,1,3,1,1,2,2,
%T A384421 2,2,1,2,2,2,1,3,1,2,2,2,1,1,1,2,2,2,1,2,2,2,2,2,1,3,1,2,2,1,2,3,1,2,
%U A384421 2,3,1,2,1,2,2,2,2,3,1,1,0,2,1,3,2,2,2
%N A384421 The number of exponentially squarefree prime powers (not including 1) that unitarily divide n.
%C A384421 First differs from A125029 at n = 64.
%C A384421 A number k unitarily divides n if k|n and gcd(k, n/k) = 1.
%C A384421 The number of unitary divisors of n that are larger than 1 and are terms in A384419.
%H A384421 Amiram Eldar, <a href="/A384421/b384421.txt">Table of n, a(n) for n = 1..10000</a>
%F A384421 Additive with a(p^e) = A008966(e).
%F A384421 Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A008966(e)/p^e = 0.40780808646244052181... .
%t A384421 f[p_, e_] := If[SquareFreeQ[e], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A384421 (PARI) a(n) = vecsum(apply(issquarefree, factor(n)[, 2]));
%Y A384421 Cf. A008966, A125029, A383959, A384419, A384420.
%K A384421 nonn,easy
%O A384421 1,6
%A A384421 _Amiram Eldar_, May 28 2025