This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384423 #8 May 28 2025 10:51:51 %S A384423 0,1,1,1,1,2,1,2,1,2,1,2,1,2,2,3,1,2,1,2,2,2,1,3,1,2,2,2,1,3,1,4,2,2, %T A384423 2,2,1,2,2,3,1,3,1,2,2,2,1,4,1,2,2,2,1,3,2,3,2,2,1,3,1,2,2,2,2,3,1,2, %U A384423 2,3,1,3,1,2,2,2,2,3,1,4,3,2,1,3,2,2,2 %N A384423 The number of prime powers (not including 1) p^e that divide n such that e is unitarily coprime to the p-adic valuation of n. %C A384423 A number k is unitarily coprime to m if the largest divisor of k that is a unitary divisor of m is 1. %H A384423 Amiram Eldar, <a href="/A384423/b384423.txt">Table of n, a(n) for n = 1..10000</a> %F A384423 Additive with a(p^e) = uphi(e), where uphi is the unitary totient function (A047994). %F A384423 Sum_{k=1..n} a(k) ~ n*(log(log(n)) + B - C + D), where B is Mertens's constant (A077761), C = Sum_{p prime} 1/p^2 (A085548), and D = Sum_{p prime, e>=2} (1-1/p)*A047994(e)/p^e = 0.74335242036929441969... . %t A384423 f[p_, e_] := p^e - 1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; %t A384423 ff[p_, e_] := uphi[e]; a[1] = 0; a[n_] := Plus @@ ff @@@ FactorInteger[n]; Array[a, 100] %o A384423 (PARI) uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);} %o A384423 a(n) = vecsum(apply(uphi, factor(n)[, 2])); %Y A384423 Cf. A047994, A077761, A085548, A321167. %K A384423 nonn,easy %O A384423 1,6 %A A384423 _Amiram Eldar_, May 28 2025