A384426 G.f.: Sum_{k>=1} x^k * Product_{j=k..2*k} (1 + x^j).
0, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 5, 6, 5, 6, 7, 8, 8, 9, 9, 10, 12, 12, 13, 14, 14, 16, 18, 19, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 38, 40, 43, 46, 48, 51, 54, 56, 60, 64, 67, 72, 77, 80, 84, 88, 92, 98, 105, 110, 116, 122, 128, 134, 142, 148, 155, 164, 172
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Sum[x^k * Product[1 + x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x] nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 + x^(2*k - 1))*(1 + x^(2*k))/(1 + x^k)]; p = Normal[p + O[x]^nmax]; s += p*(1 + x^k)*x^k;, {k, 1, nmax}]; Take[CoefficientList[s, x], nmax + 1]
Formula
a(n) ~ c * exp(r*sqrt(n)) / sqrt(n), where r = 0.926140105877... = 2*sqrt((3/2)*log(z)^2 - polylog(2, 1-z) + polylog(2, 1-z^2)), where z = (-1 + (44 - 3*sqrt(177))^(1/3) + (44 + 3*sqrt(177))^(1/3))/6 = 0.82948354095849703967... is the real root of the equation z^3*(1 - z)/(1 - z^2)^2 = 1 and c = 0.6975701...