cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384437 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.

This page as a plain text file.
%I A384437 #33 May 29 2025 14:40:30
%S A384437 1,1,1,1,1,1,1,1,2,1,1,1,5,5,1,1,1,10,93,14,1,1,1,17,847,6477,42,1,1,
%T A384437 1,26,4433,627382,1733677,132,1,1,1,37,16401,18245201,4138659802,
%U A384437 1816333805,429,1,1,1,50,48205,256754526,1197172898385,244829520301060,7526310334829,1430,1
%N A384437 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the n-th q-Catalan number for q=k.
%F A384437 A(n,k) = q_binomial(2*n, n, k)/q_binomial(n+1, 1, k).
%e A384437 Square array begins:
%e A384437   1,  1,       1,          1,             1,               1, ...
%e A384437   1,  1,       1,          1,             1,               1, ...
%e A384437   1,  2,       5,         10,            17,              26, ...
%e A384437   1,  5,      93,        847,          4433,           16401, ...
%e A384437   1, 14,    6477,     627382,      18245201,       256754526, ...
%e A384437   1, 42, 1733677, 4138659802, 1197172898385, 100333200992026, ...
%o A384437 (PARI) a(n, k) = if(k==1, binomial(2*n, n)/(n+1), (1-k)/(1-k^(n+1))*prod(j=0, n-1, (1-k^(2*n-j))/(1-k^(j+1))));
%o A384437 (Sage)
%o A384437 from sage.combinat.q_analogues import q_catalan_number
%o A384437 def a(n, k): return q_catalan_number(n, k)
%Y A384437 Columns k=0..12 give A000012, A000108, A015030, A015033, A015034, A015035, A015037, A015038, A015039, A015040, A015041, A015042, A015055.
%Y A384437 Main diagonal gives A384282.
%Y A384437 Cf. A129175
%K A384437 nonn,tabl
%O A384437 0,9
%A A384437 _Seiichi Manyama_, May 29 2025