This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384442 #22 Jun 14 2025 00:33:41 %S A384442 1,2,4,6,10,12,18,40,36,30,60,102,84,132,150,264,210,540,330,420,660, %T A384442 630,840,1050,2100,2340,2520,3150,2310,2730,4290,4620,6930,9240,15960, %U A384442 16170,17850,18480,20790,34650,62370,68250,30030,62790,60060,78540,90090,117810 %N A384442 Smallest k such that A361373(k) = n. %C A384442 For n > 1, a(n) is composite, since A361373(p) = 1 for prime p. %C A384442 For n = 0..2, a(n) = 2^n. For n > 2, a(n) is in A024619. %e A384442 Table of n, a(n) for n = 1..12, showing row a(n) of A377485. %e A384442 log n/log p %e A384442 n a(n) p_1 p_2 p_3 row n of A377485 %e A384442 ------------------------------------------------------------------------- %e A384442 1: 2 1 {p} %e A384442 2: 4 2 {p, p^2} %e A384442 3: 6 2 1 {p, q, p^2} %e A384442 4: 10 3 1 {p, p^2, q, p^3} %e A384442 5: 12 3 2 {p, q, p^2, p^3, q^2} %e A384442 6: 18 4 2 {p, q, p^2, p^3, q^2, p^4} %e A384442 7: 40 5 2 {p, p^2, q, p^3, p^4, q^2, p^5} %e A384442 8: 36 5 3 {p, q, p^2, p^3, q^2, p^4, q^3, p^5} %e A384442 9: 30 4 3 2 {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3} %e A384442 10: 60 5 3 2 {p, q, p^2, r, p^3, q^2, p^4, r^2, q^3, p^5} %e A384442 11: 102 6 4 1 {p, q, p^2, p^3, q^2, p^4, r, q^3, p^5, p^6, q^4} %e A384442 12: 84 6 4 2 {p, q, p^2, r, p^3, q^2, p^4, q^3, p^5, r^2, p^6, q^4} %t A384442 nn = 30030; t[_] := 0; u = 1; Do[(If[t[#] == 0, t[#] = n]; If[# == u, While[t[u] != 0, u++]]) &[Total@ Map[Floor@ Log[#, n] &, FactorInteger[n][[All, 1]] ] ], {n, 2, nn}]; {1}~Join~Array[t, u - 1] %Y A384442 Cf. A361373, A377845. %K A384442 nonn %O A384442 0,2 %A A384442 _Michael De Vlieger_, Jun 12 2025