This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384445 #5 Jun 10 2025 19:43:03 %S A384445 5,6,7,10,23,43,74,125,199,305,449,637,885,1216,1649,2184,2852,3664, %T A384445 4657,5863,7298,9002,10993,13312,16000,19084,22613,26606,31120,36192, %U A384445 41867,48220,55317,63232,72022,81746,92479,104282,117229,131393,146843,163652,181892 %N A384445 a(n) is the number of multisets of n decimal digits where the sum of the digits equals the product of the prime digits. %H A384445 Felix Huber, <a href="/A384445/b384445.txt">Table of n, a(n) for n = 1..200</a> %e A384445 a(3) = 7 because exactly for the 7 multisets with 3 digits {0, 0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 5}, {0, 0, 7}, {0, 2, 2} and {1, 2, 3} their sum equals the product of the prime digits. %e A384445 a(4) = 10 because exactly for the 10 multisets with 4 digits {0, 0, 0, 1}, {0, 1, 2, 3}, {1, 2, 4, 7}, {1, 3, 5, 6}, {0, 0, 0, 2}, {0, 0, 2, 2}, {0, 0, 0, 3}, {0, 0, 0, 5}, {5, 5, 6, 9} and {0, 0, 0, 7} their sum equals the product of the prime digits. %p A384445 f:=proc(p,n) %p A384445 local c,d,i,l,m,r,s,t,u,w,x,y,z; %p A384445 m:={0,1,4,6,8,9}; %p A384445 t:=seq(cat(x,i),i in m); %p A384445 y:={l='Union'(t),w='Set'(l),t=~'Atom'}; %p A384445 d:=(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))}; %p A384445 Order:=p+1; %p A384445 r:=combstruct:-agfseries(y,d,'unlabeled',z,[[u,s]])[w(z,u)]; %p A384445 r:=collect(convert(r,'polynom'),[z,u],'recursive'); %p A384445 c:=coeff(r,z,p); %p A384445 coeff(c,u,n) %p A384445 end proc: %p A384445 A384445:=proc(n) %p A384445 local a,k,m,s,p,j,L; %p A384445 a:=1; %p A384445 for k from 9*n to 1 by -1 do %p A384445 L:=ifactors(k)[2]; %p A384445 m:=nops(L); %p A384445 if m>0 and L[m,1]<=7 then %p A384445 p:=n-add(L[j,2],j=1..m); %p A384445 s:=k-add(L[j,1]*L[j,2],j=1..m); %p A384445 if s=0 and p>=0 then %p A384445 a:=a+1 %p A384445 elif p>0 and s>0 then %p A384445 a:=a+f(p,s) %p A384445 fi %p A384445 fi %p A384445 od; %p A384445 return a %p A384445 end proc; %p A384445 seq(A384445(n),n=1..43); %Y A384445 Cf. A002110, A006753, A007947, A007954, A066306, A067077, A384443, A384444, A384505. %K A384445 nonn,base %O A384445 1,1 %A A384445 _Felix Huber_, Jun 03 2025