cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384449 Primes having only {0, 4, 7} as digits.

This page as a plain text file.
%I A384449 #19 Jul 20 2025 18:05:29
%S A384449 7,47,4007,4447,7477,44777,47407,47777,74047,74077,74707,74747,77047,
%T A384449 77447,77477,77747,407047,407707,407747,440047,444007,444047,470077,
%U A384449 470447,474077,474707,477047,477077,704447,704477,704747,704777,707407,707747,740477,744077,744407,744707,747407,770047
%N A384449 Primes having only {0, 4, 7} as digits.
%H A384449 Jason Bard, <a href="/A384449/b384449.txt">Table of n, a(n) for n = 1..10000</a>
%H A384449 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a>
%t A384449 Select[FromDigits/@Tuples[{0, 4, 7}, 6], PrimeQ]
%o A384449 (Magma) [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0, 4, 7]];
%o A384449 (Python)
%o A384449 from sympy import sieve
%o A384449 A384449 = [p for p in sieve.primerange(10**6) if all(n in ['0','4','7'] for n in str(p))] # _Jwalin Bhatt_,  Jun 02 2025
%o A384449 (Python)
%o A384449 from itertools import count, islice
%o A384449 from gmpy2 import digits, is_prime
%o A384449 def A384449_gen(): # generator of terms
%o A384449     for i in count(1):
%o A384449         if is_prime(m:=int(digits(i,3).replace('1','4').replace('2','7'))):
%o A384449             yield m
%o A384449 A384449_list = list(islice(A384449_gen(),40)) # _Chai Wah Wu_, Jun 07 2025
%Y A384449 Subsequence of A030432.
%Y A384449 Supersequence of A020465.
%Y A384449 Cf. Primes that contain only the digits (0,k,7): A199327 (k=1), A261267 (k=2), A260378 (k=3), this sequence (k=4), A260827 (k=5), A261181 (k=9).
%Y A384449 Cf. A000040.
%K A384449 nonn,base
%O A384449 1,1
%A A384449 _Jason Bard_, May 29 2025