This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384449 #19 Jul 20 2025 18:05:29 %S A384449 7,47,4007,4447,7477,44777,47407,47777,74047,74077,74707,74747,77047, %T A384449 77447,77477,77747,407047,407707,407747,440047,444007,444047,470077, %U A384449 470447,474077,474707,477047,477077,704447,704477,704747,704777,707407,707747,740477,744077,744407,744707,747407,770047 %N A384449 Primes having only {0, 4, 7} as digits. %H A384449 Jason Bard, <a href="/A384449/b384449.txt">Table of n, a(n) for n = 1..10000</a> %H A384449 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A384449 Select[FromDigits/@Tuples[{0, 4, 7}, 6], PrimeQ] %o A384449 (Magma) [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0, 4, 7]]; %o A384449 (Python) %o A384449 from sympy import sieve %o A384449 A384449 = [p for p in sieve.primerange(10**6) if all(n in ['0','4','7'] for n in str(p))] # _Jwalin Bhatt_, Jun 02 2025 %o A384449 (Python) %o A384449 from itertools import count, islice %o A384449 from gmpy2 import digits, is_prime %o A384449 def A384449_gen(): # generator of terms %o A384449 for i in count(1): %o A384449 if is_prime(m:=int(digits(i,3).replace('1','4').replace('2','7'))): %o A384449 yield m %o A384449 A384449_list = list(islice(A384449_gen(),40)) # _Chai Wah Wu_, Jun 07 2025 %Y A384449 Subsequence of A030432. %Y A384449 Supersequence of A020465. %Y A384449 Cf. Primes that contain only the digits (0,k,7): A199327 (k=1), A261267 (k=2), A260378 (k=3), this sequence (k=4), A260827 (k=5), A261181 (k=9). %Y A384449 Cf. A000040. %K A384449 nonn,base %O A384449 1,1 %A A384449 _Jason Bard_, May 29 2025