cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384452 a(n) is the sum of squares of the unitary divisors of n!.

This page as a plain text file.
%I A384452 #29 Jun 09 2025 00:38:05
%S A384452 1,5,50,650,16900,547924,27396200,1746641000,139773881000,
%T A384452 13460683752200,1642203417768400,236441876606410000,
%U A384452 40195119023089700000,7723888546922636420000,1735183690969722609168800,444206919394766468845892000,128820006624482275965308680000,41737604550102658693597600532800
%N A384452 a(n) is the sum of squares of the unitary divisors of n!.
%H A384452 Project Euler, <a href="https://projecteuler.net/problem=429">Problem 429: Sum of Squares of Unitary Divisors</a>.
%H A384452 Wikipedia, <a href="https://en.wikipedia.org/wiki/Legendre%27s_formula">Legendre's formula</a>.
%F A384452 a(n) = Sum_{d|n!} (d^2 if gcd(d,n!//d) = 1).
%F A384452 a(n) = Product_{p <= n, p prime} (p^(2*f(n,p)))+1 with f(n,p) = f(floor(n/p)) + floor(n/p) and f(0,p) = 0 where f(n,p) is equivalent to the Legendre formula.
%F A384452 a(n) = A034676(n!).
%t A384452 f[p_, e_] := p^(2*e)+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 18] (* _Amiram Eldar_, Jun 02 2025 *)
%o A384452 (Python)
%o A384452 from sympy import nextprime
%o A384452 def f(n,p):
%o A384452   if n==0: return 0
%o A384452   return f(n//p,p) + n//p
%o A384452 def a(n):
%o A384452   s,p = 1, 2
%o A384452   while p<=n:
%o A384452     s *= p**(f(n,p)<<1)+1
%o A384452     p = nextprime(p)
%o A384452   return s
%o A384452 print([a(n) for n in range(1, 19)])
%o A384452 (PARI) row(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); } \\ A077610
%o A384452 a(n) = norml2(row(n!)); \\ _Michel Marcus_, Jun 02 2025
%Y A384452 Cf. A000142, A034676, A064028, A077610.
%K A384452 nonn
%O A384452 1,2
%A A384452 _DarĂ­o Clavijo_, Jun 02 2025