A384458 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^3/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
2, 7, 4, 1, 2, 5, 7, 4, 6, 5, 4, 9, 2, 5, 2, 9, 7, 0, 6, 7, 8, 8, 3, 3, 0, 3, 6, 7, 8, 7, 5, 0, 4, 7, 0, 7, 6, 2, 6, 5, 4, 4, 8, 9, 2, 9, 5, 5, 7, 5, 2, 9, 6, 5, 4, 7, 1, 8, 1, 4, 6, 2, 7, 5, 5, 3, 2, 1, 6, 0, 6, 7, 5, 8, 7, 1, 4, 1, 9, 7, 0, 1, 0, 3, 5, 8, 3, 7, 2, 2, 3, 8, 6, 9, 4, 8, 6, 6, 3, 0, 7, 0, 4, 6, 6
Offset: 0
Examples
0.27412574654925297067883303678750470762654489295575...
References
- Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 245, eq. (4.149).
- K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.
Links
- K. Ramachandra, On series integrals and continued fractions I, Hardy-Ramanujan Journal, Vol. 4 (1981), pp. 1-11.
- K. Ramachandra, On series, integrals and continued fractions, III, Acta Arithmetica, Vol. 99, No. 3 (2001), pp. 257-266.
Crossrefs
Programs
-
Mathematica
RealDigits[(Pi*Log[2])^2/8 + 5*Zeta[4]/8 - 9*Zeta[3]*Log[2]/8 - Log[2]^4/4, 10, 120][[1]]
-
PARI
(Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4
Formula
Equals (Pi*log(2))^2/8 + 5*zeta(4)/8 - 9*zeta(3)*log(2)/8 - log(2)^4/4.