A384459 Decimal expansion of Sum_{k>=1} (-1)^k*(3*k+1)*H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
1, 6, 4, 4, 0, 1, 9, 5, 3, 8, 9, 3, 1, 6, 5, 4, 2, 9, 6, 5, 2, 6, 3, 6, 2, 1, 6, 5, 0, 3, 0, 2, 3, 1, 1, 4, 0, 6, 4, 4, 1, 3, 0, 5, 1, 5, 1, 9, 0, 4, 1, 8, 1, 5, 9, 8, 1, 6, 6, 2, 1, 1, 5, 9, 4, 3, 8, 9, 1, 7, 3, 1, 0, 0, 7, 1, 4, 2, 1, 2, 7, 6, 4, 9, 2, 3, 1, 6, 3, 5, 1, 5, 5, 1, 5, 7, 6, 5, 5, 9, 4, 4, 8, 6, 0
Offset: 0
Examples
0.16440195389316542965263621650302311406441305151904...
References
- K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.
Links
- K. Ramachandra, On series integrals and continued fractions I, Hardy-Ramanujan Journal, Vol. 4 (1981), pp. 1-11.
- K. Ramachandra, On series, integrals and continued fractions, III, Acta Arithmetica, Vol. 99, No. 3 (2001), pp. 257-266.
- Michael Ian Shamos, Shamos's Catalog of the Real Numbers, 2011, p. 225.
Crossrefs
Programs
-
Mathematica
RealDigits[Log[3/2]^2, 10, 120][[1]]
-
PARI
log(3/2)^2