This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384460 #5 May 30 2025 10:35:00 %S A384460 4,4,2,4,6,0,1,8,9,3,7,7,9,1,2,4,9,5,2,1,8,7,9,8,2,1,9,1,7,4,6,5,6,3, %T A384460 3,5,1,8,4,1,3,3,6,2,7,0,2,2,5,8,3,5,8,5,8,6,4,2,6,3,2,9,3,4,7,1,2,3, %U A384460 6,3,9,2,6,3,0,8,6,1,0,9,8,3,6,6,5,3,1,3,5,5,1,6,5,3,1,0,1,9,7,0,9,4,8,8,3 %N A384460 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*H(k)^2/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. %D A384460 Ovidiu Furdui, Limits, Series, and Fractional Part Integrals, Springer, 2013, section 3.4, p. 148. %F A384460 Equals (9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12. %e A384460 0.44246018937791249521879821917465633518413362702258... %t A384460 RealDigits[(9*Zeta[3] + 4*Log[2]^3 - Pi^2*Log[2])/12, 10, 120][[1]] %o A384460 (PARI) (9*zeta(3) + 4*log(2)^3 - Pi^2*log(2))/12 %Y A384460 Cf. A001008, A002805. %Y A384460 Cf. A000796, A002117, A002162. %Y A384460 Related constants: A152648, A152649, A152651, A218505, A233090, A238168, A238181, A238182, A241753, A244667, A253191, A256988, A345203. %K A384460 nonn,cons,easy %O A384460 0,1 %A A384460 _Amiram Eldar_, May 30 2025