A384461 Decimal expansion of Sum_{k>=1} H(k)^4/k^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
4, 5, 8, 3, 3, 9, 4, 1, 4, 6, 5, 4, 1, 6, 5, 5, 7, 1, 9, 2, 5, 9, 5, 7, 6, 5, 7, 8, 9, 1, 4, 2, 2, 6, 3, 3, 4, 8, 8, 7, 9, 5, 1, 1, 3, 3, 1, 5, 4, 8, 4, 8, 4, 2, 3, 2, 5, 4, 9, 2, 2, 2, 5, 7, 1, 5, 3, 9, 1, 3, 5, 1, 9, 5, 9, 3, 6, 4, 2, 8, 2, 2, 3, 7, 0, 0, 0, 6, 7, 8, 1, 2, 2, 9, 8, 2, 9, 9, 6, 0, 6, 5, 2, 7, 4
Offset: 2
Examples
45.83394146541655719259576578914226334887951133154848...
References
- Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 230, eq. (4.122).
Links
- Cornel Ioan Vălean, (Almost) Impossible Integrals, Sums, and Series, Springer International Publishing, 2019, p. 296, eq. (4.39).
Crossrefs
Programs
-
Mathematica
RealDigits[979*Zeta[6]/24 + 3*Zeta[3]^2, 10, 120][[1]]
-
PARI
979*zeta(6)/24 + 3*zeta(3)^2
Formula
Equals 979*zeta(6)/24 + 3*zeta(3)^2.