This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384462 #5 May 30 2025 10:34:56 %S A384462 2,3,0,0,9,5,4,5,5,1,7,0,0,5,2,5,0,3,9,8,0,6,4,2,2,7,6,9,8,9,2,2,5,6, %T A384462 0,0,0,4,6,9,9,7,5,6,4,6,4,0,6,2,3,9,6,4,2,8,8,0,4,1,4,9,5,4,7,7,8,7, %U A384462 2,1,1,7,2,7,8,9,2,4,5,0,2,6,5,2,8,1,4,1,0,0,0,4,7,1,4,4,1,9,7,7,0,5,7,4,1 %N A384462 Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. %D A384462 Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 231, eq. (4.126). %H A384462 Cornel Ioan Vălean, <a href="http://dx.doi.org/10.7153/jca-10-10">A master theorem of series and an evaluation of a cubic harmonic series</a>, Journal of Classical Analysis, Vol. 10, No. 2 (2017), pp. 97-107. %H A384462 Cornel Ioan Vălean, <a href="https://doi.org/10.1007/978-3-030-02462-8">(Almost) Impossible Integrals, Sums, and Series</a>, Springer International Publishing, 2019, p. 294, eq. (4.35). %F A384462 Equals 93*zeta(6)/16 - 5*zeta(3)^2/2. %e A384462 2.30095455170052503980642276989225600046997564640623... %t A384462 RealDigits[93*Zeta[6]/16 - 5*Zeta[3]^2/2, 10, 120][[1]] %o A384462 (PARI) 93*zeta(6)/16 - 5*zeta(3)^2/2 %Y A384462 Cf. A001008, A002805. %Y A384462 Cf. A002117, A013664. %Y A384462 Related constants: A152648, A152649, A152651, A218505, A233090, A238168, A238181, A238182, A241753, A244667, A253191, A256988, A345203. %K A384462 nonn,cons,easy %O A384462 1,1 %A A384462 _Amiram Eldar_, May 30 2025