cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384462 Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

This page as a plain text file.
%I A384462 #5 May 30 2025 10:34:56
%S A384462 2,3,0,0,9,5,4,5,5,1,7,0,0,5,2,5,0,3,9,8,0,6,4,2,2,7,6,9,8,9,2,2,5,6,
%T A384462 0,0,0,4,6,9,9,7,5,6,4,6,4,0,6,2,3,9,6,4,2,8,8,0,4,1,4,9,5,4,7,7,8,7,
%U A384462 2,1,1,7,2,7,8,9,2,4,5,0,2,6,5,2,8,1,4,1,0,0,0,4,7,1,4,4,1,9,7,7,0,5,7,4,1
%N A384462 Decimal expansion of Sum_{k>=1} H(k)^3/k^3, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.
%D A384462 Ali Shadhar Olaikhan, An Introduction to the Harmonic Series and Logarithmic Integrals, 2021, p. 231, eq. (4.126).
%H A384462 Cornel Ioan Vălean, <a href="http://dx.doi.org/10.7153/jca-10-10">A master theorem of series and an evaluation of a cubic harmonic series</a>, Journal of Classical Analysis, Vol. 10, No. 2 (2017), pp. 97-107.
%H A384462 Cornel Ioan Vălean, <a href="https://doi.org/10.1007/978-3-030-02462-8">(Almost) Impossible Integrals, Sums, and Series</a>, Springer International Publishing, 2019, p. 294, eq. (4.35).
%F A384462 Equals 93*zeta(6)/16 - 5*zeta(3)^2/2.
%e A384462 2.30095455170052503980642276989225600046997564640623...
%t A384462 RealDigits[93*Zeta[6]/16 - 5*Zeta[3]^2/2, 10, 120][[1]]
%o A384462 (PARI) 93*zeta(6)/16 - 5*zeta(3)^2/2
%Y A384462 Cf. A001008, A002805.
%Y A384462 Cf. A002117, A013664.
%Y A384462 Related constants: A152648, A152649, A152651, A218505, A233090, A238168, A238181, A238182, A241753, A244667, A253191, A256988, A345203.
%K A384462 nonn,cons,easy
%O A384462 1,1
%A A384462 _Amiram Eldar_, May 30 2025