cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384473 Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.

This page as a plain text file.
%I A384473 #18 May 31 2025 11:05:20
%S A384473 1,0,8,3,6,6,1,2,0,1,6,2,5,6,1,4,6,7,0,0,8,0,4,6,9,3,5,2,7,7,1,6,4,4,
%T A384473 2,9,8,9,6,1,3,3,4,3,1,0,0,3,4,2,3,5,2,3,9,7,3,8,8,0,2,8,4,3,2,0,7,0,
%U A384473 3,4,6,2,9,1,5,7,9,8,0,4,9,4,1,5,2,1,2,4,6,8,8,1,2,1,0,1,3,3,1,8
%N A384473 Decimal expansion of the middle interior angle (in degrees) in Albrecht Dürer's approximate construction of the regular pentagon.
%D A384473 Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
%D A384473 Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.
%H A384473 Alexander Bogomolny, <a href="http://www.cut-the-knot.org/pythagoras/DurerPentagon.shtml">Approximate Construction of Regular Pentagon by A. Dürer</a>.
%H A384473 Stefano Spezia, <a href="/A384473/a384473.png">Albrecht Dürer's approximate construction of the regular pentagon</a>.
%H A384473 Wikipedia, <a href="https://en.wikipedia.org/wiki/Albrecht_Dürer">Albrecht Dürer</a>.
%F A384473 Equals 135 - 180*arcsin(sqrt(3)*sin(Pi/12))/Pi.
%F A384473 Equals (Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))))*180/Pi.
%F A384473 Equals (540 - 2*A384475 - A384477)/2.
%F A384473 A384475 < this constant < A384477.
%e A384473 108.366120162561467008046935277164429896133431...
%t A384473 RealDigits[(3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]])180/Pi,10,100][[1]] (* or *)
%t A384473 RealDigits[(Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])])180/Pi,10,100][[1]]
%Y A384473 Cf. A228719, A384474 (in radians).
%Y A384473 Cf. A002194, A019824, A072097, A177870.
%Y A384473 Cf. A384475, A384476, A384477, A384478.
%K A384473 nonn,cons
%O A384473 3,3
%A A384473 _Stefano Spezia_, May 30 2025