cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384474 Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.

This page as a plain text file.
%I A384474 #14 May 31 2025 11:05:24
%S A384474 1,8,9,1,3,4,5,5,9,4,4,4,8,5,1,0,4,1,8,6,8,7,1,7,3,4,7,8,9,5,2,7,3,9,
%T A384474 1,9,9,0,2,4,7,7,9,2,2,5,3,0,7,7,4,6,9,6,6,9,2,7,7,4,8,7,7,0,3,7,2,8,
%U A384474 8,7,5,9,6,9,4,5,8,5,4,4,4,3,1,4,7,8,6,3,2,3,2,3,2,2,6,8,1,0,3,1
%N A384474 Decimal expansion of the middle interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.
%D A384474 Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
%D A384474 Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 181-182.
%H A384474 Alexander Bogomolny, <a href="http://www.cut-the-knot.org/pythagoras/DurerPentagon.shtml">Approximate Construction of Regular Pentagon by A. Dürer</a>.
%H A384474 Stefano Spezia, <a href="/A384474/a384474.png">Albrecht Dürer's approximate construction of the regular pentagon</a>.
%H A384474 Wikipedia, <a href="https://en.wikipedia.org/wiki/Albrecht_Dürer">Albrecht Dürer</a>.
%F A384474 Equals 3*Pi/4 - arcsin(sqrt(3)*sin(Pi/12)).
%F A384474 Equals Pi + arctan((3 - sqrt(3) + sqrt(6*sqrt(3) - 4))/(3 - sqrt(3) - sqrt(6*sqrt(3) - 4))).
%F A384474 Equals (3*Pi - 2*A384476 - A384478)/2.
%F A384474 A384476 < this constant < A384478.
%e A384474 1.891345594448510418687173478952739199024779225...
%t A384474 RealDigits[3Pi/4-ArcSin[Sqrt[3]Sin[Pi/12]],10,100][[1]] (* or *)
%t A384474 RealDigits[Pi+ArcTan[(3-Sqrt[3]+Sqrt[6Sqrt[3]-4])/(3-Sqrt[3]-Sqrt[6Sqrt[3]-4])],10,100][[1]]
%Y A384474 Cf. A228719, A384473 (in degrees).
%Y A384474 Cf. A002194, A019824, A177870.
%Y A384474 Cf. A384475, A384476, A384477, A384478.
%K A384474 nonn,cons
%O A384474 1,2
%A A384474 _Stefano Spezia_, May 30 2025