cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384476 Decimal expansion of the smallest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.

This page as a plain text file.
%I A384476 #17 May 31 2025 11:05:31
%S A384476 1,8,6,8,1,6,2,4,8,6,5,0,8,3,5,1,7,7,7,5,8,0,3,4,7,3,3,3,8,5,9,1,6,7,
%T A384476 7,0,3,5,1,5,4,5,2,1,9,5,2,8,0,5,8,5,2,1,2,8,3,9,1,5,5,9,1,8,4,5,7,8,
%U A384476 4,8,9,4,1,0,6,2,3,7,6,5,1,0,7,1,7,1,0,8,1,0,2,6,3,3,4,2,0,7,4,7
%N A384476 Decimal expansion of the smallest interior angle (in radians) in Albrecht Dürer's approximate construction of the regular pentagon.
%D A384476 Alfred S. Posamentier and Herbert A. Hauptman, 101 great ideas for introducing key concepts in mathematics: a resource for secondary school teachers, Corwin Press, Inc., 2001. See pages 144-145.
%H A384476 Stefano Spezia, <a href="/A384474/a384474.png">Albrecht Dürer's approximate construction of the regular pentagon</a>.
%H A384476 Stefano Spezia, <a href="/A384476/a384476.png">Exact form of the constant</a>.
%H A384476 Wikipedia, <a href="https://en.wikipedia.org/wiki/Albrecht_Dürer">Albrecht Dürer</a>.
%F A384476 Equals (3*Pi - 2*A384474 - A384478)/2.
%e A384476 1.868162486508351777580347333859167703515452195...
%t A384476 RealDigits[Pi + ArcTan[(-10 + 10 Sqrt[3] + 2 Sqrt[-4 + 6 Sqrt[3]] +2 Sqrt[-34 + 28 Sqrt[3] + 5 Sqrt[6 (-2 + 3 Sqrt[3])] - 11 Sqrt[-4 + 6 Sqrt[3]]] -3 Sqrt[2 (8 - 2 Sqrt[3] -Sqrt[6 (-2 + 3 Sqrt[3])] + Sqrt[-4 + 6 Sqrt[3]])] + Sqrt[6 (8 - 2 Sqrt[3] - Sqrt[6 (-2 + 3 Sqrt[3])] + Sqrt[-4 + 6 Sqrt[3]])])/(2 + 2 Sqrt[3] + 2 Sqrt[6 (-2 + 3 Sqrt[3])] - 4 Sqrt[-4 + 6 Sqrt[3]] - 2 Sqrt[-34 + 28 Sqrt[3] + 5 Sqrt[6 (-2 + 3 Sqrt[3])] - 11 Sqrt[-4 + 6 Sqrt[3]]] - 3 Sqrt[2 (8 - 2 Sqrt[3] - Sqrt[6 (-2 + 3 Sqrt[3])] + Sqrt[-4 + 6 Sqrt[3]])] + Sqrt[6 (8 - 2 Sqrt[3] - Sqrt[6 (-2 + 3 Sqrt[3])] +Sqrt[-4 + 6 Sqrt[3]])])],10,100][[1]]
%Y A384476 Cf. A228719, A384475 (in degrees).
%Y A384476 Cf. A384473, A384474, A384477, A384478.
%K A384476 nonn,cons
%O A384476 1,2
%A A384476 _Stefano Spezia_, May 30 2025