cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384480 Square array read by antidiagonals: T(n,k) is the length of a shortest addition-composition chain for n*x+k, starting with 1 and x; n, k >= 0.

This page as a plain text file.
%I A384480 #7 Jun 09 2025 10:38:23
%S A384480 0,0,0,1,1,1,2,2,2,2,2,3,2,3,2,3,3,3,3,3,3,3,4,3,3,3,4,3,4,4,4,4,3,4,
%T A384480 4,4,3,5,4,4,3,4,4,5,3,4,4,4,4,4,4,4,5,4,3,4,5,4,5,3,4,4,5,4,4,4,5,5,
%U A384480 5,5,4,4,4,5,4,5,5,4,4,5,5,5,4,4,4,5,4,4,5,5,4
%N A384480 Square array read by antidiagonals: T(n,k) is the length of a shortest addition-composition chain for n*x+k, starting with 1 and x; n, k >= 0.
%C A384480 An addition-composition chain for the affine function f is a finite sequence of affine functions, starting with 1, x and ending with f, in which each element except 1 and x equals g(x)+h(x) or g(h(x)) for two preceding, not necessarily distinct, elements g(x) and h(x) in the chain. The length of the chain is the number of elements in the chain, excluding 1 and x. Such chains exist only for functions of the form f(x) = n*x+k, where n and k are nonnegative integers, not both 0.
%C A384480 T(0,0) = 0 by convention.
%C A384480 Equivalently, the chains can be defined on pairs (s,t) of nonnegative integers (corresponding to the function f(x) = s*x+t) with the operations (s,t)+(u,v) = (s+t,u+v) (addition) and (s,t)o(u,v) = (s*u,s*v+t) (composition).
%F A384480 T(n,k) <= T(n,k-1) + 1.
%F A384480 T(n,k) <= T(n-1,k) + 1.
%e A384480 Array begins:
%e A384480   n\k| 0  1  2  3  4  5  6  7  8  9 10 11 12
%e A384480   ---+--------------------------------------
%e A384480    0 | 0  0  1  2  2  3  3  4  3  4  4  5  4
%e A384480    1 | 0  1  2  3  3  4  4  5  4  5  5  5  5
%e A384480    2 | 1  2  2  3  3  4  4  4  4  5  5  5  5
%e A384480    3 | 2  3  3  3  4  4  4  5  5  5  5  5  5
%e A384480    4 | 2  3  3  3  3  4  3  4  4  4  4  5  4
%e A384480    5 | 3  4  4  4  4  4  4  4  5  5  5  5  5
%e A384480    6 | 3  4  4  4  4  4  4  5  4  4  5  5  5
%e A384480    7 | 4  5  5  5  5  5  5  5  5  5  5  6  6
%e A384480    8 | 3  4  4  4  4  4  4  4  4  5  4  5  4
%e A384480    9 | 3  4  5  4  4  5  5  5  4  5  5  5  4
%e A384480   10 | 4  5  5  5  5  5  5  5  5  5  5  6  5
%e A384480   11 | 4  5  6  5  5  5  6  6  6  5  5  6  6
%e A384480   12 | 4  5  5  5  5  5  5  5  5  5  5  5  5
%e A384480 For (n,k) = (4,6), the unique shortest chain for 4*x+6 is (1, x,) x+1, 2*x+2, 4*x+6 of length T(4,6) = 3. The last term of the chain is the composition of 2*x+2 with itself.
%e A384480 For (n,k) = (6,4), a shortest chain for 6*x+4 is (1, x,) x+1, 2*x+2, 3*x+2, 6*x+4 of length T(6,4) = 4. This chain uses only additions.
%Y A384480 Cf. A383330 (addition only), A384481, A384482, A384483 (row 0).
%K A384480 nonn,tabl
%O A384480 0,7
%A A384480 _Pontus von Brömssen_, Jun 02 2025