This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384488 #29 Jun 30 2025 15:43:13 %S A384488 3,4,6,8,10,12,14,15,18,20,24,26,28,30,32,35,36,38,40,42,44,48,50,54, %T A384488 60,62,63,66,68,70,72,74,78,80,84,86,88,90,92,96,98,99,102,104,108, %U A384488 110,114,120,122,126,128,130,132,138,140,143,144,146,150,152,154,158,162,164,168,170,174,176,180 %N A384488 Numbers k having a divisor d such that d - k/d is prime. %C A384488 Presumably, all odd terms are in A000466. %H A384488 Robert Israel, <a href="/A384488/b384488.txt">Table of n, a(n) for n = 1..10000</a> %e A384488 a(6) = 12 is a term because 12 = 1*12 with 12 - 1 = 11 prime. %p A384488 filter:= k -> ormap(d -> d^2 > k and isprime(d - k/d), numtheory:-divisors(k)): %p A384488 select(filter, [$1..200]); # _Robert Israel_, Jun 30 2025 %t A384488 A384488Q[k_] := AnyTrue[Divisors[k], PrimeQ[# - k/#] &]; %t A384488 Select[Range[200], A384488Q] (* _Paolo Xausa_, Jun 30 2025 *) %o A384488 (Magma) [k: k in [1..180] | not #[d: d in Divisors (k) | IsPrime(d-(k div d))] eq 0]; %o A384488 (PARI) isok(k) = fordiv(k, d, if (isprime(d - k/d), return(1))); \\ _Michel Marcus_, Jun 01 2025 %Y A384488 Cf. A000466, A005408, A355643. Includes A005563 and 2 * A052147. %K A384488 nonn %O A384488 1,1 %A A384488 _Juri-Stepan Gerasimov_, May 30 2025