cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384490 Numbers m such that both roots of x^2 - x - 1 modulo m are primitive roots modulo m.

Original entry on oeis.org

41, 61, 109, 149, 241, 269, 389, 409, 449, 569, 601, 641, 701, 821, 929, 1129, 1181, 1201, 1301, 1321, 1429, 1481, 1489, 1609, 1801, 1889, 1901, 1949, 2129, 2141, 2309, 2341, 2381, 2549, 2609, 2741, 2909, 3061, 3109, 3181, 3209, 3221, 3229, 3361, 3449, 3541
Offset: 1

Views

Author

Jay Anderson, May 31 2025

Keywords

Comments

Empirical observation: For each m in this sequence A001175(m) = m-1 and A015134(m) = m+2.

Examples

			For m = 41 the roots of x^2 - x - 1 (mod 41) are 7 and 35. 7 and 35 are both primitive roots modulo 41.
		

Crossrefs

Programs

  • Mathematica
    test[p_]:=Module[{inv2,sqr},If[JacobiSymbol[5,p]==1,inv2=ModularInverse[2,p]; sqr=PowerMod[5,1/2,p]; {MultiplicativeOrder[Mod[inv2*(sqr-1),p],p],MultiplicativeOrder[Mod[inv2*(-sqr-1),p],p]} == {p-1,p-1},False]]; Cases[Prime[Range[4, 5000]], ?(test[#] &)] (* _Shenghui Yang, Jun 01 2025 *)
  • PARI
    { forprime(p=2, 3600, s=polrootsmod(x^2 - x - 1,p);
     if( #s==2 && p-1==znorder(Mod(s[1],p)) && p-1==znorder(Mod(s[2],p)),
     print1(p,", "); ); ); } \\ Joerg Arndt, May 31 2025