This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384494 #11 Jun 22 2025 00:16:04 %S A384494 1,2,-2,6,-4,3,24,-12,6,-4,120,-48,18,-8,5,720,-240,72,-24,10,-6,5040, %T A384494 -1440,360,-96,30,-12,7,40320,-10080,2160,-480,120,-36,14,-8,362880, %U A384494 -80640,15120,-2880,600,-144,42,-16,9,3628800,-725760,120960,-20160,3600,-720,168,-48,18,-10 %N A384494 Triangle read by rows: T(n, k) = (-1)^k*(k+1)*(n+1-k)!, n >= 0, k = 0..n. %C A384494 This triangle, written as (infinite) square matrix MT with vanishing upper diagonals 0, together with the Riordan triangle A104698, written also as such a square matrix MR, appears in the double sum formula for the number of certain restricted permutations given in A086852(n), as diagonal sequence A086852(n+2) = (2*MR*MT^t)_{n,n}, for n >=0, where t indicates matrix transpositon. %F A384494 T(n, k) = (-1)^k*(k+1)*(n+1-k)!, for n >= 0 and k = 0, 1, ..., n. %F A384494 O.g.f. of row polynomials P(n, y) := Sum_{k=0..n} T(n, k) y^k: G(x, y) = ((N(x) - 1)/x) * (1/(1 + y*x)^2), with N(x) = hypergeometric([1,1], [], x), the o.g.f. of {n!}_{n>=0} (see A000142). %e A384494 The triangle T begins: %e A384494 n\k 0 1 2 3 4 5 6 7 8 9 ... %e A384494 --------------------------------------------------------------------- %e A384494 0: 1 %e A384494 1: 2 -2 %e A384494 2: 6 -4 3 %e A384494 3: 24 -12 6 -4 %e A384494 4: 120 -48 18 -8 5 %e A384494 5: 720 -240 72 -24 10 -6 %e A384494 6: 5040 -1440 360 -96 30 -12 7 %e A384494 7: 40320 -10080 2160 -480 12 -36 14 -8 %e A384494 8: 362880 -80640 15120 -2880 600 -144 42 -16 9 %e A384494 9: 3628800 -725760 120960 -20160 3600 -720 168 -48 18 -10 %e A384494 ... %t A384494 Table[(-1)^k * (k+1) * (n+1-k)!, {n, 0, 9}, {k, 0, n}] // Flatten (* _Amiram Eldar_, May 31 2025 *) %Y A384494 Cf. A104698, A086852, A086852. %Y A384494 Column sequences: A000142(n+1), -A052849, A052560(n-1), -A052578(n-2), A052648(n-3), -A298881(n-4), A062098(n-5), -A159038(n-6), ... %K A384494 sign,tabl,easy %O A384494 0,2 %A A384494 _Wolfdieter Lang_, May 31 2025