cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384498 Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.

This page as a plain text file.
%I A384498 #24 Jun 02 2025 09:50:23
%S A384498 1,30,70,286,646,1798,2145,2310,2730,3135,3526,3570,4641,4845,5005,
%T A384498 5610,6006,6279,6630,7198,7410,7854,8778,8855,8970,9177,10366,10374,
%U A384498 10626,10695,11305,11571,11730,13110,13485,13566,13585,15470,16095,16302,16422,16530
%N A384498 Squarefree numbers whose distinct prime factors can be partitioned into two sets with equal sums.
%H A384498 Alois P. Heinz, <a href="/A384498/b384498.txt">Table of n, a(n) for n = 1..10000</a>
%e A384498 2145 = 3*5*11*13 is a term because it is squarefree and 3+13 = 5+11.
%e A384498 16422 = 2*3*7*17*23 is squarefree and 2+7+17 = 3+23.
%p A384498 q:= n-> (l-> {l[.., 2][]} minus {1}={} and (s->
%p A384498         (m-> m::even and coeff(mul(1+x^j, j=s), x, m/2)>0)
%p A384498         (add(i, i=s)))({l[.., 1][]}))(ifactors(n)[2]):
%p A384498 select(q, [$1..20000])[];
%t A384498 Join[{1},Select[Range[16600],SquareFreeQ[#]&&MemberQ[Total/@Subsets[First/@FactorInteger[#]],Total[First/@FactorInteger[#]]/2]&]] (* _James C. McMahon_, Jun 02 2025 *)
%Y A384498 Intersection of A005117 and A221054.
%Y A384498 Cf. A071141, A071142, A071312.
%K A384498 nonn
%O A384498 1,2
%A A384498 _Alois P. Heinz_, May 31 2025