A384505 a(n) is the number of multisets of n positive decimal digits where the sum of the digits equals the product of the prime digits.
5, 1, 1, 3, 13, 20, 31, 51, 74, 106, 144, 188, 248, 331, 433, 535, 668, 812, 993, 1206, 1435, 1704, 1991, 2319, 2688, 3084, 3529, 3993, 4514, 5072, 5675, 6353, 7097, 7915, 8790, 9724, 10733, 11803, 12947, 14164, 15450, 16809, 18240, 19757, 21374, 23073, 24876, 26759
Offset: 1
Examples
a(1) = 5 because exactly for the 5 multisets with 1 digits {1}, {2}, {3}, {5}, and {7} their sum equals the product of the prime digits. a(2) = 1 because only for 1 multiset with 2 positive digits {2, 2} their sum equals the product of the prime digits: 2 + 2 = 2*2 = 4. a(3) = 1 because only for 1 multiset with 3 positive digits {1, 2, 3} their sum equals the product of the prime digits: 1 + 2 + 3 = 2*3 = 6. a(4) = 3 because exactly for the 3 multisets with 4 digits {1, 2, 4, 7}, {1, 3, 5, 6}, and {5, 5, 6, 9} their sum equals the product of the prime digits: 1 + 2 + 4 + 7 = 2 * 7 = 14, 1 + 3 + 5 + 6 = 3*5 = 15, 5 + 5 + 6 + 9 = 5*5 = 25.
Links
- Felix Huber, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Maple
f:=proc(p,n) local i,l,m,s,t,u,w,x,z; m:={1,4,6,8,9}; t:=seq(cat(x,i),i in m); Order:=p+1; coeff(coeff(collect(convert(combstruct:-agfseries({l='Union'(t),w='Set'(l),t=~'Atom'},(map2(apply,s,{t})=~m) union {s(w)='Set'(s(l))},'unlabeled',z,[[u,s]])[w(z,u)],'polynom'),[z,u],'recursive'),z,p),u,n) end proc: A384505:=proc(n) local a,k,m,s,p,j,L; if n=1 then 5 elif n=2 then 1 else a:=0; for k from 9*n to 1 by -1 do L:=ifactors(k)[2]; m:=nops(L); if m>0 and L[m,1]<=7 then p:=n-add(L[j,2],j=1..m); s:=k-add(L[j,1]*L[j,2],j=1..m); if p>0 and s>0 then a:=a+f(p,s) fi fi od; return a fi; end proc; seq(A384505(n),n=1..48);