This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384509 #17 Jun 05 2025 23:38:08 %S A384509 1,2,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,19,19,21,22,23,24,25,26,27, %T A384509 28,29,31,32,33,34,35,36,37,38,39,40,42,43,44,45,46,47,48,49,51,51,53, %U A384509 54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,71,71,73,74,75,76,77,78,79,80 %N A384509 a(n) = number of iterations of z -> z^2 + c(n) with c(n) = ((5/n+1) + (5/n-1)*i)/(n*sqrt(2)) + 1/4 + (1/2)*i to reach |z| > 2, starting with z = 0. %C A384509 a(n)/n seems to converge to Pi/(2*sqrt(2)). %C A384509 a(n) counts the escape time of points outside the Mandelbrot set that converge to the Mandelbrot set's 1/4 period bulb. %H A384509 Luke Bennet, <a href="/A384509/b384509.txt">Table of n, a(n) for n = 1..10001</a> %H A384509 Thies Brockmöller, Oscar Scherz, and Nedim Srkalović, <a href="https://arxiv.org/abs/2505.07138">Pi in the Mandelbrot set everywhere</a>, arXiv preprint arXiv:2505.07138 [math.DS], 2025. %H A384509 Aaron Klebanoff, <a href="https://www.doc.ic.ac.uk/~jb/teaching/jmc/pi-in-mandelbrot.pdf">Pi in the Mandelbrot Set</a>, Fractals 9 (2001), nr. 4, p. 393-402. %o A384509 (Python) %o A384509 import mpmath %o A384509 from mpmath import iv %o A384509 def a(n): %o A384509 dps = 1 %o A384509 while True: %o A384509 mpmath.iv.dps = dps %o A384509 c = iv.mpc(iv.mpf(5) / n + 1, iv.mpf(5) / n - 1) %o A384509 c = c / (n * iv.sqrt(2)) + 0.25 + 0.5j %o A384509 z = iv.mpc(0, 0) %o A384509 counter = 0 %o A384509 while (z.real**2 + z.imag**2).b <= 4: %o A384509 z = z ** 2 + c %o A384509 counter += 1 %o A384509 if (z.real**2 + z.imag**2).a > 4: %o A384509 return counter %o A384509 dps *= 2 %o A384509 (PARI) c(n) = ((5/n+1) + (5/n-1)*I)/(n*sqrt(2)) + 1/4 + (1/2)*I; %o A384509 a(n) = my(z=0, k=0, c=c(n)); while(norml2(z)<=4, z = z^2 + c; k++); k; \\ _Michel Marcus_, Jun 01 2025 %Y A384509 Cf. A093954, A097486, A383750, A384513. %K A384509 nonn %O A384509 1,2 %A A384509 _Luke Bennet_, May 31 2025