This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384513 #10 Jun 05 2025 22:34:10 %S A384513 1,1,1,2,2,3,3,4,4,4,5,6,7,7,8,8,9,9,10,10,10,11,12,12,13,13,14,14,15, %T A384513 15,16,16,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,26,27,27, %U A384513 28,28,28,29,30,30,31,31,32,32,33,33,34,34,35,35,36,36,37,38,38,39,39,40 %N A384513 a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 16/(n^2) + (1/n)*i + 3/8 + (sqrt(3)/8)*i to reach |z| > 2, starting with z = 0. %C A384513 a(n)/n seems to converge to Pi/6. %C A384513 a(n) counts the escape time of points outside the Mandelbrot set that converge to the Mandelbrot set's 1/6 period bulb. This is a proven fact and was the motivation for creating the sequence. %H A384513 Luke Bennet, <a href="/A384513/b384513.txt">Table of n, a(n) for n = 1..10001</a> %H A384513 Thies Brockmöller, Oscar Scherz, and Nedim Srkalović, <a href="https://arxiv.org/abs/2505.07138">Pi in the Mandelbrot set everywhere</a>, arXiv preprint arXiv:2505.07138 [math.DS], 2025. %H A384513 Aaron Klebanoff, <a href="https://www.doc.ic.ac.uk/~jb/teaching/jmc/pi-in-mandelbrot.pdf">Pi in the Mandelbrot Set</a>, Fractals 9 (2001), nr. 4, p. 393-402. %o A384513 (Python) %o A384513 def a(n): %o A384513 dps = 1 %o A384513 while True: %o A384513 mpmath.iv.dps = dps %o A384513 c = iv.mpc(iv.mpf(16) / n ** 2 + 0.375, iv.mpf(1) / n + iv.sqrt(3) / 8) %o A384513 z = iv.mpc(0, 0) %o A384513 counter = 0 %o A384513 while (z.real**2 + z.imag**2).b <= 4: %o A384513 z = z ** 2 + c %o A384513 counter += 1 %o A384513 if (z.real**2 + z.imag**2).a > 4: %o A384513 return counter %o A384513 dps *= 2 %Y A384513 Cf. A019673, A097486, A383750, A384509. %K A384513 nonn %O A384513 1,4 %A A384513 _Luke Bennet_, May 31 2025