cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384517 Nonsquarefree numbers that are squarefree numbers raised to an even power.

This page as a plain text file.
%I A384517 #15 Jun 01 2025 16:38:06
%S A384517 4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,361,441,484,529,
%T A384517 625,676,729,841,900,961,1024,1089,1156,1225,1296,1369,1444,1521,1681,
%U A384517 1764,1849,2116,2209,2401,2601,2809,3025,3249,3364,3481,3721,3844,4096,4225,4356
%N A384517 Nonsquarefree numbers that are squarefree numbers raised to an even power.
%C A384517 Differs from its subsequence A340674 by having the terms 64, 729, 1024, 4096, .... .
%C A384517 Numbers whose prime factorization exponents are equal and even.
%H A384517 Amiram Eldar, <a href="/A384517/b384517.txt">Table of n, a(n) for n = 1..10000</a>
%H A384517 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%H A384517 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A384517 a(n) = A062770(n)^2 = A072774(n+1)^2.
%F A384517 Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k)/zeta(4*k)-1) = Sum{k>=1} (A231327(k)/(A231273(k)*Pi^(2*k)) - 1) = 0.62022193512079649421... .
%t A384517 Select[Range[2, 100], SameQ @@ FactorInteger[#][[;;, 2]] &]^2
%o A384517 (PARI) isok(k) = {my(s, e = ispower(k, , &s)); !(e % 2) && issquarefree(s);}
%o A384517 (Python)
%o A384517 from math import isqrt
%o A384517 from sympy import mobius, integer_nthroot
%o A384517 def A384517(n):
%o A384517     def bisection(f,kmin=0,kmax=1):
%o A384517         while f(kmax) > kmax: kmax <<= 1
%o A384517         kmin = kmax >> 1		
%o A384517         while kmax-kmin > 1:
%o A384517             kmid = kmax+kmin>>1
%o A384517             if f(kmid) <= kmid:
%o A384517                 kmax = kmid
%o A384517             else:
%o A384517                 kmin = kmid
%o A384517         return kmax
%o A384517     def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
%o A384517     def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(2,x.bit_length(),2))
%o A384517     return bisection(f,n,n) # _Chai Wah Wu_, Jun 01 2025
%Y A384517 Intersection of A000290 and A072777.
%Y A384517 Equals A072777 \ A384518.
%Y A384517 A340674 is a subsequence.
%Y A384517 Cf. A005117, A062770, A072774, A231273, A231327.
%K A384517 nonn
%O A384517 1,1
%A A384517 _Amiram Eldar_, Jun 01 2025