cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384518 Nonsquarefree numbers that are squarefree numbers raised to an odd power.

This page as a plain text file.
%I A384518 #15 Jun 01 2025 16:37:57
%S A384518 8,27,32,125,128,216,243,343,512,1000,1331,2048,2187,2197,2744,3125,
%T A384518 3375,4913,6859,7776,8192,9261,10648,12167,16807,17576,19683,24389,
%U A384518 27000,29791,32768,35937,39304,42875,50653,54872,59319,68921,74088,78125,79507,97336,100000
%N A384518 Nonsquarefree numbers that are squarefree numbers raised to an odd power.
%C A384518 Subsequence of A097054 and first differs from it at n = 12: A097054(12) = 1728 = 2^6 * 3^3 is not a term of this sequence.
%C A384518 Numbers whose prime factorization exponents are equal, odd and larger than 1.
%H A384518 Amiram Eldar, <a href="/A384518/b384518.txt">Table of n, a(n) for n = 1..10000</a>
%H A384518 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%H A384518 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A384518 Sum_{n>=1} 1/a(n) = Sum_{k>=1} (zeta(2*k+1)/zeta(4*k+2)-1) = 0.22841193284408713846... .
%t A384518 Select[Range[10^5], Length[(u = Union[FactorInteger[#][[;; , 2]]])] == 1 && u[[1]] > 1 && OddQ[u[[1]]] &]
%o A384518 (PARI) isok(k) = {my(s, e = ispower(k, , &s)); e % 2 && issquarefree(s);}
%o A384518 (Python)
%o A384518 from math import isqrt
%o A384518 from sympy import mobius, integer_nthroot
%o A384518 def A384518(n):
%o A384518     def bisection(f,kmin=0,kmax=1):
%o A384518         while f(kmax) > kmax: kmax <<= 1
%o A384518         kmin = kmax >> 1		
%o A384518         while kmax-kmin > 1:
%o A384518             kmid = kmax+kmin>>1
%o A384518             if f(kmid) <= kmid:
%o A384518                 kmax = kmid
%o A384518             else:
%o A384518                 kmin = kmid
%o A384518         return kmax
%o A384518     def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
%o A384518     def f(x): return n+x-sum(g(integer_nthroot(x,e)[0])-1 for e in range(3,x.bit_length(),2))
%o A384518     return bisection(f,n,n) # _Chai Wah Wu_, Jun 01 2025
%Y A384518 Intersection of A072777 and A268335.
%Y A384518 Equals A072777 \ A384517.
%Y A384518 Subsequence of A097054.
%Y A384518 Cf. A005117.
%K A384518 nonn
%O A384518 1,1
%A A384518 _Amiram Eldar_, Jun 01 2025