cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384531 Multiplicative sequence a(n) with a(p^e) = ((2*e+1) * p - 2*e) * p^(e-1) for prime p and e >= 0.

Original entry on oeis.org

1, 4, 7, 12, 13, 28, 19, 32, 33, 52, 31, 84, 37, 76, 91, 80, 49, 132, 55, 156, 133, 124, 67, 224, 105, 148, 135, 228, 85, 364, 91, 192, 217, 196, 247, 396, 109, 220, 259, 416, 121, 532, 127, 372, 429, 268, 139, 560, 217, 420, 343, 444, 157, 540, 403, 608, 385, 340, 175, 1092
Offset: 1

Views

Author

Werner Schulte, Jun 01 2025

Keywords

Crossrefs

Programs

  • Maple
    A384531 := proc(n)
        local a,pe,p,e;
        a :=1 ;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            e := op(2,pe) ;
            a := a*((2*e+1) * p - 2*e) * p^(e-1) ;
        end do:
        a ;
    end proc:
    seq(A384531(n),n=1..100) ;# R. J. Mathar, Jun 04 2025
  • Mathematica
    f[p_, e_] := ((2*e+1)*p - 2*e)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 01 2025 *)
  • PARI
    a(n)=my(f=factor(n)); prod(k=1,#f[,1],((2*f[k,2]+1)*f[k,1]-2*f[k,2])*f[k,1]^(f[k,2]-1))
    
  • Python
    from math import prod
    from sympy import factorint
    def A384531(n): return prod((((m:=e<<1)|1)*p-m)*p**(e-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 03 2025

Formula

Dirichlet g.f.: Sum_{n > 0} a(n) / n^s = (zeta(s-1))^2 * Product_{p prime} (1 + (p-2) / p^s).
Dirichlet convolution of A018804 and A173557.
Conjecture: a(n) = Sum_{i=1..n} gcd(i, n) * gcd(i+1, n).
From Vaclav Kotesovec, Jun 04 2025: (Start)
Let f(s) = Product_{primes p} (1 + 2/p^(2*s-1) - 1/p^(2*s-2) - 2/p^s).
Dirichlet g.f.: zeta(s-1)^3 * f(s).
Sum_{k=1..n} a(k) ~ f(2) * n^2 * (log(n)^2 + (6*gamma - 1 + 2*f'(2)/f(2))*log(n) + 1/2 - 3*gamma + 6*gamma^2 - 6*sg1 + (6*gamma - 1)*f'(2)/f(2) + f''(2)/f(2))/4, where
f(2) = Product_{primes p} (1 - 3/p^2 + 2/p^3) = A065473 = 0.2867474284344787341...,
f'(2) = f(2) * Sum_{primes p} 4*log(p)/(p^2 + p - 2) = 0.53488225650873164189786660885838556843579696135554271633442328...,
f''(2) = f'(2)^2/f(2) + f(2) * Sum_{primes p} (-2*p*(3*p+2)*log(p)^2 / (p^2+p-2)^2) = -0.29112624105319980992840485620511000074444413707069816872854442...,
gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). (End)