This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384539 #30 Aug 17 2025 02:08:15 %S A384539 11,12,13,14,15,16,17,18,19,21,22,24,26,28,31,33,36,39,41,42,44,48,51, %T A384539 55,61,62,63,66,71,77,81,82,84,88,91,93,99,111,121,122,123,124,126, %U A384539 131,141,142,147,151,153,155,161,162,164,168,171,181,182,183,186,189 %N A384539 Zeroless positive integers k for which for every pair of nonempty substrings that concatenate to give k one substring divides the other. %C A384539 It is conjectured that this sequence is finite and contains 132 terms. %C A384539 From _David A. Corneth_, Jun 19 2025: (Start) %C A384539 A term with at least 3 digits cannot end in 14. Else we can split it in 10*k + 1 and 4 where k >= 1. So we'd need 4 | 10*k + 1. A contradiction. %C A384539 If a term with at least 5 digits ends in 89 then it is 100*k + 89 where k >= 1000. %C A384539 We'd need 9 | 1000*k + 8, 89 | 100*k so 89 | k. This largely restrict the possibilities for k. (End) %C A384539 a(133) > 10^11, if it exists. - _Michael S. Branicky_, Jun 18 2025 %C A384539 a(133) > 10^25, if it exists. - _David A. Corneth_, Jun 19 2025 %H A384539 Felix Huber, <a href="/A384539/b384539.txt">Table of n, a(n) for n = 1..132</a> %H A384539 David A. Corneth, <a href="/A384539/a384539.gp.txt">PARI program</a> %e A384539 168 is a term because 1 divides 68 and 8 divides 16. %e A384539 4284 is a term because 4 divides 284, 42 divides 84 and 4 divides 428. %e A384539 222222 is a term because 2 divides 22222, 22 divides 2222, 222 divides 222 and vice versa. %p A384539 A384539:=proc(n) %p A384539 option remember; %p A384539 local i,j,k,p,m,q,L; %p A384539 if n=1 then %p A384539 11 %p A384539 else %p A384539 for k from procname(n-1)+1 do %p A384539 L:=ListTools:-Reverse(convert(k,'base',10)); %p A384539 if not member(0,L) then %p A384539 m:=length(k)-1; %p A384539 for j to m do %p A384539 p:=parse(cat(seq(L[i],i=1..j))); %p A384539 q:=k-p*10^(m+1-length(p)); %p A384539 if max(p,q) mod min(p,q)<>0 then %p A384539 break %p A384539 elif j=m then %p A384539 return k %p A384539 fi %p A384539 od %p A384539 fi %p A384539 od %p A384539 fi; %p A384539 end proc; %p A384539 seq(A384539(n),n=1..60); %o A384539 (Python) %o A384539 def c(k, m): return m%k == 0 or k%m == 0 %o A384539 def ok(n): %o A384539 s = str(n) %o A384539 return n > 9 and "0" not in s and all(c(int(s[:i]), int(s[i:])) for i in range(1, len(s))) %o A384539 print([k for k in range(200) if ok(k)]) # _Michael S. Branicky_, Jun 18 2025 %Y A384539 Subsequence of A052382. %Y A384539 Subsequence of A384538. %Y A384539 Cf. A102766, A228103. %K A384539 nonn,base %O A384539 1,1 %A A384539 _Felix Huber_, Jun 09 2025