cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384554 The sum of the infinitary divisors of n that are cubefree.

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 7, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 28, 26, 42, 13, 40, 30, 72, 32, 3, 48, 54, 48, 50, 38, 60, 56, 42, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 39, 72, 56, 80, 90, 60, 120, 62, 96, 80, 5, 84, 144, 68, 90
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

The number of these divisors is A368883(n), and the largest of them is A384555(n).
The sum of the infinitary divisors of n that are squarefree (A005117) is A367991(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Switch[Mod[e, 4], 0, 1, 1, p+1, 2, p^2+1, 3, p^2+p+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; [1, p+1, p^2+1, p^2+p+1][e%4+1]);}
    
  • Python
    from math import prod
    from sympy import factorint
    def A384554(n): return prod((1,p+1,p**2+1,p*(p+1)+1)[e&3] for p,e in factorint(n).items()) # Chai Wah Wu, Jun 03 2025

Formula

Multiplicative with a(p^e) = 1 if e == 0 (mod 4), p + 1 if e == 1 (mod 4), p^2 + 1 if e == 2 (mod 4), and p^2 + p + 1 if e == 3 (mod 4).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
a(n) <= A049417(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(4*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s + 1/p^(2*s-2) + 1/p^(2*s) + 1/p^(3*s-1) + 1/p^(3*s-2) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(8) * Product_{p prime} (1 + 1/p^2 - 2/p^3 + 2/p^4 - 1/p^5 - 1/p^7) = 1.2351002232125595782019... .