A384555 The largest infinitary divisor of n that is cubefree.
1, 2, 3, 4, 5, 6, 7, 4, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 12, 25, 26, 9, 28, 29, 30, 31, 2, 33, 34, 35, 36, 37, 38, 39, 20, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 18, 55, 28, 57, 58, 59, 60, 61, 62, 63, 4, 65, 66, 67, 68, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Switch[Mod[e, 4], 0, 1, 1, p, 2, p^2, 3, p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; [1, p, p^2, p^2][e%4+1]);}
Formula
Multiplicative with a(p^e) = 1 if e == 0 (mod 4), p if e == 1 (mod 4), p^2 if e == 2 or 3 (mod 4).
a(n) = n if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(4*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) + 1/p^(3*s-2)).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = zeta(8) * Product_{p prime} (1 - 1/p^3 + 1/p^4 - 1/p^5) = 0.87406992849637563411... .
Comments