A384556 The sum of the exponential divisors of n that are cubefree.
1, 2, 3, 6, 5, 6, 7, 2, 12, 10, 11, 18, 13, 14, 15, 6, 17, 24, 19, 30, 21, 22, 23, 6, 30, 26, 3, 42, 29, 30, 31, 2, 33, 34, 35, 72, 37, 38, 39, 10, 41, 42, 43, 66, 60, 46, 47, 18, 56, 60, 51, 78, 53, 6, 55, 14, 57, 58, 59, 90, 61, 62, 84, 6, 65, 66, 67, 102, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], p, p + p^2]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1] + if(!(f[i,2] % 2), f[i,1]^2));}
-
Python
from math import prod from sympy import factorint def A384556(n): return prod(p*(1+p*(e&1^1)) for p, e in factorint(n).items()) # Chai Wah Wu, Jun 03 2025
Formula
Multiplicative with a(p^e) = p if e is odd, and p+p^2 is e is even.
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) + 1/p^(2*s-1) - 1/p^(2*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 0.95692470821076622881...
Comments