A384558 The sum of the exponential divisors of n that are exponentially odd numbers (A268335).
1, 2, 3, 2, 5, 6, 7, 10, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 30, 5, 26, 30, 14, 29, 30, 31, 34, 33, 34, 35, 6, 37, 38, 39, 50, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 60, 55, 70, 57, 58, 59, 30, 61, 62, 21, 10, 65, 66, 67, 34, 69
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A384558:=proc(n) local a, pe,p,e,af,d; a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; e := op(2,pe) ; af := 0 ; for d in numtheory[divisors](e) do if type(d,'odd') then af := af+p^d ; end if; end do: a := a*af ; end do; a end proc: seq(A384558(n), n=1..100); # R. J. Mathar, Jun 04 2025
-
Mathematica
f[p_, e_] := DivisorSum[e, p^# &, OddQ[#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i,2], d, (d % 2) * f[i,1]^d));}
Formula
Multiplicative with a(p^e) = Sum_{d|e, d odd} p^d.
a(n) = n if and only if n is squarefree (A005117).
a(n) < n if and only if n is in A072587.
a(n) > n if and only if n is in A374459.
limsup_{n->oo} a(n)/n = Product_{p prime} (1 + 1/p^2) = 15/Pi^2 (A082020).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1)) - 1/(p^2-1) + (1-1/p) * Sum_{k>=1} p^(2*k+1)/(p^(4*k+2)-1)) = 0.80824764393216997768... .
Comments