A384562 Number of integer partitions of n with origin-to-boundary graph-distance equal to 4.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 12, 24, 42, 66, 98, 135, 181, 233, 298, 367, 452, 543, 651, 765, 899, 1039, 1202, 1371, 1564, 1765, 1993, 2227, 2491, 2763, 3066, 3377, 3722, 4075, 4465, 4863, 5299, 5745, 6232, 6727, 7266, 7815, 8409, 9013, 9665, 10327, 11040, 11763, 12538, 13325, 14167, 15019, 15929, 16851, 17832, 18825, 19880, 20947, 22079, 23223, 24433, 25657, 26950
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- N. Guru Sharan and Armin Straub, Partitions with Durfee triangles of fixed size, arXiv:2507.19047 [math.CO], 2025. See p. 13.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-2,0,0,1,1,-1).
Programs
-
Mathematica
CoefficientList[Series[(q^10 (1 + 4q + 6 q^2 + 7 q^3 + 6 q^4 + 2 q^5 - 5 q^7 - 5 q^8 - 5 q^9 + q^11 + 3 q^12 + 2 q^13 - q^16))/((1 - q)(1 - q^2)(1 - q^3)(1 - q^4)), {q, 0, 50}], q]
Formula
G.f.: q^10*(1 + 4*q + 6*q^2 + 7*q^3 + 6*q^4 + 2*q^5 - 5*q^7 - 5*q^8 - 5*q^9 + q^11 + 3*q^12 + 2*q^13 - q^16)/((1 - q)*(1 - q^2)*(1 - q^3)*(1 - q^4)).
Comments