cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384586 Decimal expansion of the second largest zero of the Laguerre polynomial of degree 4.

This page as a plain text file.
%I A384586 #18 Aug 08 2025 11:56:54
%S A384586 4,5,3,6,6,2,0,2,9,6,9,2,1,1,2,7,9,8,3,2,7,9,2,8,5,3,8,4,9,5,7,1,3,7,
%T A384586 8,8,0,1,2,5,7,8,4,3,5,3,3,8,6,8,0,4,6,4,9,7,4,8,0,5,7,5,8,7,5,5,5,8,
%U A384586 2,8,4,5,0,8,7,5,1,4,3,1,5,8,9,7,6,5,3
%N A384586 Decimal expansion of the second largest zero of the Laguerre polynomial of degree 4.
%H A384586 Paolo Xausa, <a href="/A384586/b384586.txt">Table of n, a(n) for n = 1..10000</a>
%H A384586 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.9, n = 4.
%H A384586 V. I. Krylov, <a href="https://books.google.de/books?id=lswsAwAAQBAJ">Approximate calculation of integrals</a> (Dover publications) (1962) page 347 n=4.
%H A384586 A.H.M. Smeets, <a href="/A384277/a384277.txt">Abscissas and weight factors for Laguerre integration for some larger degrees</a>.
%H A384586 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>.
%H A384586 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html">Laguerre-Gauss Quadrature</a>.
%H A384586 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A384586 Second largest root of x^4 - 16 x^3 + 72 x^2 - 96 x + 24 = 0.
%e A384586 4.53662029692112798327928538495713788012578435338680...
%t A384586 First[RealDigits[Root[LaguerreL[4, #] &, 3], 10, 100]] (* _Paolo Xausa_, Jun 18 2025 *)
%o A384586 (PARI) solve(x = 2, 6, x^4 - 16*x^3 + 72*x^2 - 96*x + 24)
%Y A384586 There are k positive real zeros of the Laguerre polynomial of degree k:
%Y A384586    k | zeros                                    | corresponding weights for Laguerre-Gauss quadrature
%Y A384586   ---+------------------------------------------+-----------------------------------------------------
%Y A384586    2 | A101465, 1+A014176                       | A201488, A100954-3
%Y A384586    3 | A384277, A384278, A384279                | A384463, A384464, A384465
%Y A384586    4 | A384280, A384281, this sequence, A384587 | A384466, A384467, A384588, A384589
%K A384586 nonn,cons
%O A384586 1,1
%A A384586 _A.H.M. Smeets_, Jun 04 2025