cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384587 Decimal expansion of the largest zero of the Laguerre polynomial of degree 4.

This page as a plain text file.
%I A384587 #11 Jun 18 2025 12:23:13
%S A384587 9,3,9,5,0,7,0,9,1,2,3,0,1,1,3,3,1,2,9,2,3,3,5,3,6,4,4,3,4,2,0,5,4,7,
%T A384587 6,1,6,4,5,6,5,8,3,9,0,6,6,0,7,8,2,7,0,8,1,2,8,0,7,0,7,8,9,7,6,3,8,7,
%U A384587 4,6,8,1,2,9,7,4,9,5,5,6,6,7,0,1,4,7,4
%N A384587 Decimal expansion of the largest zero of the Laguerre polynomial of degree 4.
%H A384587 Paolo Xausa, <a href="/A384587/b384587.txt">Table of n, a(n) for n = 1..10000</a>
%H A384587 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.9, n = 4.
%H A384587 A.H.M. Smeets, <a href="/A384277/a384277.txt">Abscissas and weight factors for Laguerre integration for some larger degrees</a>.
%H A384587 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>.
%H A384587 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html">Laguerre-Gauss Quadrature</a>.
%H A384587 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>.
%F A384587 Second largest root of x^4 - 16 x^3 + 72 x^2 - 96 x + 24 = 0.
%e A384587 9.39507091230113312923353644342054761645658390660782...
%t A384587 First[RealDigits[Root[LaguerreL[4, #] &, 4], 10, 100]] (* _Paolo Xausa_, Jun 18 2025 *)
%o A384587 (PARI) solve(x = 6, 16, x^4 - 16*x^3 + 72*x^2 - 96*x + 24)
%Y A384587 There are k positive real zeros of the Laguerre polynomial of degree k:
%Y A384587    k | zeros                                    | corresponding weights for Laguerre-Gauss quadrature
%Y A384587   ---+------------------------------------------+-----------------------------------------------------
%Y A384587    2 | A101465, 1+A014176                       | A201488, A100954-3
%Y A384587    3 | A384277, A384278, A384279                | A384463, A384464, A384465
%Y A384587    4 | A384280, A384281, A384586, this sequence | A384466, A384467, A384588, A384589
%K A384587 nonn,cons
%O A384587 1,1
%A A384587 _A.H.M. Smeets_, Jun 07 2025