This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384589 #11 Jun 26 2025 08:00:09 %S A384589 0,0,0,5,3,9,2,9,4,7,0,5,5,6,1,3,2,7,4,5,0,1,0,3,7,9,0,5,6,7,6,2,0,5, %T A384589 9,3,2,1,2,2,7,7,2,5,6,9,6,6,4,3,3,2,4,4,0,8,5,4,6,6,4,9,9,4,7,7,9,0, %U A384589 1,0,9,1,7,5,6,9,3,7,2,3,0,2,7,8,5,7,9,1,1,6 %N A384589 Decimal expansion of the weight factor for Laguerre-Gauss quadrature corresponding to abscissa A384587. %H A384589 Paolo Xausa, <a href="/A384589/b384589.txt">Table of n, a(n) for n = 0..10000</a> %H A384589 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Table 25.9, n = 4. %H A384589 A.H.M. Smeets, <a href="/A384277/a384277.txt">Abscissas and weight factors for Laguerre integration for some larger degrees</a>. %H A384589 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Laguerre-GaussQuadrature.html">Laguerre-Gauss Quadrature</a>. %H A384589 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A384589 Smallest root of 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9 = 0. %e A384589 0.00053929470556132745010379056762059321227725696643324... %t A384589 First[RealDigits[Root[1990656*#^4 - 1990656*#^3 + 504576*#^2 - 16960*# + 9 &, 1], 10, 100, -1]] (* _Paolo Xausa_, Jun 26 2025 *) %o A384589 (PARI) solve(x = 0.0, 0.01, 1990656*x^4 - 1990656*x^3 + 504576*x^2 - 16960*x + 9) %Y A384589 Cf. A384590. %Y A384589 There are k positive real zeros of the Laguerre polynomial of degree k: %Y A384589 k | zeros | corresponding weights for Laguerre-Gauss quadrature %Y A384589 ---+------------------------------------------+----------------------------------------------------- %Y A384589 2 | A101465, 1+A014176 | A201488, A100954-3 %Y A384589 3 | A384277, A384278, A384279 | A384463, A384464, A384465 %Y A384589 4 | A384280, A384281, A384586, A384587 | A384466, A384467, A384588, this sequence %K A384589 nonn,cons %O A384589 0,4 %A A384589 _A.H.M. Smeets_, Jun 14 2025