A384596 a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (F(2), F(3), ..., F(n+1)), where F = A000045 (Fibonacci numbers), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
1, 1, 36, 630, 75264, 10309104, 6689940744, 6609305472651, 25797682556382400, 181805125100075828614, 4497447436889592767655228, 225317753810449180044272832000, 36410024238337826166260377355303568, 12904889422278677354475665889049659231531
Offset: 1
Keywords
Examples
The rows of M(4) are (1,2,3,5), (5,1,2,3), (3,5,1,2), (2,3,5,1); determinant(M(4)) = -429; permanent(M(4)) = 1689, so neg(M(4)) = (-429 - 1689)/2 = -1059 and pos(M(4)) = (-429 + 1689)/2 = 630.