cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384603 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is less than 2.

This page as a plain text file.
%I A384603 #10 Jun 11 2025 03:19:59
%S A384603 5,23,37,47,53,67,79,83,89,131,157,163,167,173,211,233,251,257,263,
%T A384603 277,293,337,353,359,367,373,379,383,389,409,439,443,449,479,503,547,
%U A384603 557,563,577,587,593,607,613,631,647,653,677,683,691,701,709,719,727,733,739,751,757,787,797
%N A384603 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is less than 2.
%C A384603 Primes prime(k) such that Max(prime(k)-prime(k-1),prime(k+1)-prime(k)) / Min(prime(k)-prime(k-1),prime(k+1)-prime(k)) < 2.
%F A384603 Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 1/3.
%e A384603 5 is a term because Max(5-3,7-5)/Min(5-3,7-5) = 2/2 = 1.
%e A384603 23 is a term because Max(23-19,29-23)/Min(23-19,29-23) = 6/4 = 1.5.
%e A384603 37 is a term because Max(37-31,41-37)/Min(37-31,41-37) = 6/4 = 1.5.
%o A384603 (PARI) forprime(P=3, 1000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M,Q)/min(M,Q), AR0=2); if(AR<AR0, print1(P,", ")));
%o A384603 (Python)
%o A384603 from itertools import islice
%o A384603 from sympy import nextprime
%o A384603 def A384603_gen(): # generator of terms
%o A384603     p,q,r = 2,3,5
%o A384603     while True:
%o A384603         s, t = q-p, r-q
%o A384603         if s<(t<<1) and t<(s<<1): yield q
%o A384603         p, q, r = q, r, nextprime(r)
%o A384603 A384603_list = list(islice(A384603_gen(),59)) # _Chai Wah Wu_, Jun 10 2025
%Y A384603 Cf. A383215.
%K A384603 nonn
%O A384603 1,1
%A A384603 _Alain Rocchelli_, Jun 04 2025