This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384605 #7 Jun 04 2025 23:21:59 %S A384605 1,2,6,12,32,68,172,380,932,2108,5076,11644,27732,64156,151796,352956, %T A384605 831828,1940060,4561460,10658044,25023764,58533020,137311988, %U A384605 321396540,753578452,1764540636,4136061364,9687067004,22702231188,53178376476,124613167220 %N A384605 Expansion of (1+x) / (1-x-4*x^2+2*x^3). %C A384605 Number of walks of length n starting at vertex 2 in the following graph: %C A384605 0 2 %C A384605 \ /| %C A384605 1 | %C A384605 / \| %C A384605 4 3. %H A384605 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>. %H A384605 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,4,-2). %e A384605 a(3)=6 because we have the walks 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, 0-1-3-2, 0-1-4-1. %p A384605 a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|0>, <0|1|0|0|0>>^n. <<1,1,1,1,1>>)[3,1]: %p A384605 seq(a(n), n=0..32); %t A384605 CoefficientList[Series[(1 + x)/(1 - x - 4*x^2 + 2*x^3), {x, 0, 32}], x] %Y A384605 Cf. A384604 (vertices 0, 1, 4), A213173 (missing edge {2,3}), A382683 (missing edge {1,4}). %K A384605 nonn,easy,walk %O A384605 0,2 %A A384605 _Sean A. Irvine_, Jun 04 2025