cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384616 A(m,n) is the maximum sum of absolute differences of the labels of adjacent vertices of the grid graph P_m X P_n where the m*n labels are exactly 1, 2, ..., m*n.

Original entry on oeis.org

0, 1, 8, 3, 23, 58, 7, 44, 115
Offset: 1

Views

Author

Sela Fried, Jun 07 2025

Keywords

Comments

A(m, n) ~ Theta((m*n)^2) (see link).

Examples

			Array begins (values in parentheses are conjectural):
  [1]  0
  [2]  1    8
  [3]  3   23    58
  [4]  7   44   115   (216)
  [5] 11   71  (182)  (347)  (554)
  [6] 17  104  (271)  (508)  (815) (1192)
  [7] 23  143  (370)  (699) (1118) (1639) (2250)
  [8] 31 (188) (491)  (920) (1475) (2156) (2963) (3896)
  [9] 39 (239) (622) (1171) (1874) (2743) (3766) (4955) (6298)
		

Crossrefs

Column 1 is A047838.
Cf. A067725.

Programs

  • Python
    import itertools
    import numpy as np
    def max_difference_sum(m, n):
        nums = list(range(1, m * n + 1))
        max_sum = 0
        best_matrix = None
        for perm in itertools.permutations(nums):
            matrix = np.array(perm).reshape((m, n))
            diff_sum = np.sum(np.abs(matrix[:,1:]-matrix[:,:-1])) + np.sum(np.abs(matrix[1:,:]-matrix[:-1,:]))
            if diff_sum > max_sum:
                max_sum = diff_sum
                best_matrix = matrix.copy()
        return max_sum, best_matrix
    for m in range(1, 10):
        for n in range(1, m+1):
            max_sum, best = max_difference_sum(m, n)
            print(max_sum, end=', ')

Formula

Conjecture: A(m,2) = A067725(m-1) - 1.