cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384618 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2.

This page as a plain text file.
%I A384618 #12 Jun 11 2025 03:05:14
%S A384618 29,31,59,61,73,113,127,137,139,149,151,179,181,191,199,223,239,241,
%T A384618 269,271,283,307,317,331,347,419,421,431,433,467,521,523,541,569,571,
%U A384618 599,601,619,641,659,661,673,773,809,811,821,829,853,863,877,887,907,953,967
%N A384618 Primes preceded and followed by gaps whose quotient (value greater or equal to 1) is greater than 2.
%C A384618 Primes prime(k) such that Max(prime(k)-prime(k-1),prime(k+1)-prime(k)) / Min(prime(k)-prime(k-1),prime(k+1)-prime(k)) > 2.
%F A384618 Conjecture: Limit_{n->oo} n / PrimePi(a(n)) = 2/3.
%e A384618 19 is not a term because Max(19-17,23-19)/Min(19-17,23-19) = 4/2 = 2.
%e A384618 29 is a term because Max(29-23,31-29)/Min(29-23,31-29) = 6/2 = 3.
%e A384618 31 is a term because Max(31-29,37-31)/Min(31-29,37-31) = 6/2 = 3.
%e A384618 37 is not a term because Max(37-31,41-37)/Min(37-31,41-37) = 6/4 = 1.5.
%o A384618 (PARI) forprime(P=3, 1000, my(M=P-precprime(P-1), Q=nextprime(P+1)-P, AR=max(M, Q)/min(M, Q), AR0=2); if(AR>AR0, print1(P, ", ")));
%o A384618 (Python)
%o A384618 from itertools import islice
%o A384618 from sympy import nextprime
%o A384618 def A384618_gen(): # generator of terms
%o A384618     p,q,r = 2,3,5
%o A384618     while True:
%o A384618         s, t = q-p, r-q
%o A384618         if s>(t<<1) or t>(s<<1): yield q
%o A384618         p, q, r = q, r, nextprime(r)
%o A384618 A384618_list = list(islice(A384618_gen(),54)) # _Chai Wah Wu_, Jun 10 2025
%Y A384618 Cf. A384603.
%K A384618 nonn
%O A384618 1,1
%A A384618 _Alain Rocchelli_, Jun 04 2025