cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384625 Decimal expansion of the surface area of a pentagonal orthobicupola with unit edge.

Original entry on oeis.org

1, 7, 7, 7, 1, 0, 8, 1, 8, 2, 0, 1, 0, 0, 1, 2, 7, 0, 7, 9, 3, 3, 6, 6, 3, 9, 8, 0, 8, 5, 4, 1, 9, 0, 0, 1, 1, 6, 1, 7, 1, 7, 6, 1, 4, 7, 4, 5, 4, 6, 3, 4, 8, 2, 2, 8, 5, 5, 3, 7, 0, 6, 8, 6, 2, 6, 7, 7, 5, 7, 0, 5, 2, 6, 6, 8, 9, 9, 3, 2, 5, 5, 5, 3, 6, 7, 7, 4, 7, 9
Offset: 2

Views

Author

Paolo Xausa, Jun 05 2025

Keywords

Comments

The pentagonal orthobicupola is Johnson solid J_30.
Also the surface area of a pentagonal gyrobicupola (Johnson solid J_31) with unit edge.

Examples

			17.771081820100127079336639808541900116171761474546...
		

Crossrefs

Cf. A384624 (volume).

Programs

  • Mathematica
    First[RealDigits[10 + Sqrt[5*(10 + Sqrt[5] + Sqrt[75 + 30*Sqrt[5]])/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J30", "SurfaceArea"], 10, 100]]

Formula

Equals 10 + sqrt(5*(10 + sqrt(5) + sqrt(75 + 30*sqrt(5)))/2) = 10 + sqrt(5*(10 + A002163 + sqrt(75 + 30*A002163))/2).
Equals the largest root of x^8 - 80*x^7 + 2700*x^6 - 50000*x^5 + 552750*x^4 - 3710000*x^3 + 14628125*x^2 - 30562500*x + 25328125.