This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384630 #13 Jun 17 2025 19:28:37 %S A384630 1,1,2,3,6,14,34,98,294,952,3246,11698,43732,170752,689996,2888034, %T A384630 12458784,55406422,253142182,1187934740,5712033368,28131119956, %U A384630 141645386202,728841303696,3827217750492,20499431084644,111876916526070,621831335167486,3516904353610572 %N A384630 Number of self-inverse double cosets in Z_n\S_n/Z_n. %C A384630 Z_n is the cyclic group of order n, seen as a subgroup of the symmetric group S_n. %C A384630 Cosets in S_n/Z_n are in bijection with cycles obtained by connecting cyclically n equally spaced points on a circle. Double cosets in Z_n\S_n/Z_n are in bijection with cycles up to rotation. %H A384630 Ludovic Schwob, <a href="https://arxiv.org/abs/2506.04007">On the enumeration of double cosets and self-inverse double cosets</a>, arXiv:2506.04007 [math.CO], 2025. See Proposition 4.1 p. 9. %o A384630 (Python) # From Proposition 4.1 in the reference: %o A384630 from sympy import factorial,divisors,totient %o A384630 def A384630(n): %o A384630 s = 0 %o A384630 if n%2==0: %o A384630 for d in divisors(n//2): %o A384630 if d%2==0: %o A384630 s += totient(d)*(d//2)**(n//2//d)*factorial(n//d)//factorial(n//2//d) %o A384630 else: %o A384630 s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//2//d+1)) %o A384630 else: %o A384630 for d in divisors(n): %o A384630 s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//d//2+1)) %o A384630 return s//n %Y A384630 Cf. A000142 (cycles), A002619 (cycles up to rotation), A384631 (self-inverse polygons). %K A384630 nonn %O A384630 1,3 %A A384630 _Ludovic Schwob_, Jun 05 2025