This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384631 #15 Jun 22 2025 19:35:43 %S A384631 1,2,4,8,17,52,153,482,1623,5879,21926,85436,344998,1444437,6230232, %T A384631 27704051,126571091,593974930,2856031804,14065575098,70822693101, %U A384631 364420818168,1913609207886,10249715874962,55938458263035,310915671908063,1758452185453926,10115287840489764 %N A384631 Number of self-inverse double cosets in D_n\S_n/D_n. %C A384631 D_n is the dihedral group of order 2*n, seen as a subgroup of the symmetric group S_n. %C A384631 Cosets in S_n/D_n are in bijection with polygons obtained by connecting cyclically n equally spaced points on a circle. Double cosets in D_n\S_n/D_n are in bijection with polygons up to rotation and reflection. %H A384631 Ludovic Schwob, <a href="https://arxiv.org/abs/2506.04007">On the enumeration of double cosets and self-inverse double cosets</a>, arXiv:2506.04007 [math.CO], 2025. See Proposition 4.2 p.9. %o A384631 (Python) # From Proposition 4.2 in the reference: %o A384631 from sympy import divisors, factorial, totient %o A384631 def A384631(n): %o A384631 s = 0 %o A384631 if n%2==0: %o A384631 for d in divisors(n//2): %o A384631 if d%2==0: %o A384631 s += totient(d)*factorial(n//d)*(d//2)**(n//2//d)//factorial(n//2//d) %o A384631 else: %o A384631 s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//2//d+1)) %o A384631 s += n//2*((n%4)//2+1)*factorial(2*(n//4))//factorial(n//4) %o A384631 else: %o A384631 for d in divisors(n): %o A384631 s += totient(d)*sum(factorial(n//d)*d**i//2**i//factorial(i)//factorial(n//d-2*i) for i in range(n//d//2+1)) %o A384631 if n%4==1: %o A384631 s += n*factorial(n//2)//factorial(n//4) %o A384631 return s//n//2 %Y A384631 Cf. A001710 (polygons), A000940 (polygons up to rotation and reflection), A384630 (self-inverse cycles). %K A384631 nonn %O A384631 3,2 %A A384631 _Ludovic Schwob_, Jun 05 2025