This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384635 #6 Jul 08 2025 11:50:39 %S A384635 1,3,8,22,58,158,420,1136,3036,8180,21920,58952,158168,425032,1140976, %T A384635 3064960,8229648,22103600,59355776,159410272,428089760,1149677536, %U A384635 3087468096,8291603712,22267339200,59800139584,160595513856,431286986880,1158238963072 %N A384635 Expansion of (1+3*x+2*x^2) / (1-6*x^2-4*x^3+2*x^4). %C A384635 Number of walks of length n starting at vertex 3 in the following graph: %C A384635 2 %C A384635 / \ %C A384635 0-1---3 %C A384635 \ / %C A384635 4. %H A384635 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>. %H A384635 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,4,-2). %e A384635 a(2)=8 because we have the walks 3-1-0, 3-1-2, 3-1-3. 3-1-4, 3-2-1, 3-2-3, 3-4-1, 3-4-3. %p A384635 a:= n-> (<<0|1|0|0|0>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <0|1|0|1|0>>^n. <<1,1,1,1,1>>)[3,1]: %p A384635 seq(a(n), n=0..32); %t A384635 CoefficientList[Series[(1+2*x+x^2) / (1-6*x^2-4*x^3+2*x^4), {x, 0, 32}], x] %Y A384635 Cf. A384633 (vertices 0, 1), A384634 (vertices 2, 4), A005824 (missing edge {1,3}), A105476 (missing edge {1,2}). %K A384635 nonn,easy,walk %O A384635 0,2 %A A384635 _Sean A. Irvine_, Jun 05 2025