This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384648 #7 Jul 08 2025 11:57:59 %S A384648 1,3,9,26,77,225,662,1941,5701,16730,49117,144169,423214,1242293, %T A384648 3646701,10704594,31422685,92239057,270761670,794802325,2333088789, %U A384648 6848623754,20103672349,59012968697,173228577950,508500766133,1492669593277,4381630579842 %N A384648 Expansion of (1+2*x+x^2) / (1-x-5*x^2-2*x^3). %C A384648 Number of walks of length n starting at vertex 0 in the following graph: %C A384648 1---2 %C A384648 /|\ | %C A384648 0 | \ | %C A384648 \| \| %C A384648 4---3. %C A384648 Also, by symmetry, the number of walks of length n starting at vertex 4 in the same graph. %H A384648 Sean A. Irvine, <a href="https://oeis.org/wiki/User:Sean_A._Irvine/Walks_on_Graphs#5_vertices">Walks on Graphs</a>. %H A384648 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,2). %e A384648 a(2)=9 because we have the walks 3-1-0, 3-1-2, 3-1-3, 3-1-4, 3-2-1, 3-2-3, 3-4-0, 3-4-1, 3-4-3. %p A384648 a:= n-> (<<0|1|0|0|1>, <1|0|1|1|1>, <0|1|0|1|0>, <0|1|1|0|1>, <1|1|0|1|0>>^n. <<1,1,1,1,1>>)[4,1]: %p A384648 seq(a(n), n=0..32); %t A384648 CoefficientList[Series[(1+2*x+x^2) / (1-x-5*x^2-2*x^3), {x, 0, 32}], x] %Y A384648 Cf. A384646 (vertices 0 and 2), A384647 (vertex 1), A077937 (missing edge {1,3}). %K A384648 nonn,easy,walk %O A384648 0,2 %A A384648 _Sean A. Irvine_, Jun 05 2025